System Response via Laplace Transform

First Order System

x(s) __4
u(s) 1+sT
T is the system’s time constant [units of time]
A is the gain [units of x]/[units of u]

dx(t
Transfer function: Differential Equation: T%+x(t) = ﬂu(l)

(To save clutter, we assume, without loss of generality, that Ais 1).
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Response to unit step: u(s)=—
s
1

System response: X(S):ng_HrsT =

+Im

s=-1/T

= x(1) =l-e""

Step Response of First Order System

x(T) = 63% final value

Settling Time Ts =4T. i.e. x(Ts) = 98% of final value.

Tangent at t = 0 intercepts final value att=T

Note that the greater T, the slower the response and the closer s = -1/T to the origin.



Simple 2nd order system

2 2
Transfer function: x(s) =— L , Differential Eqn: dL,Et)+2§a)n dx—(t)Jra)jx(t) = Awu(t)
u(s) s> +2{w,s+w; dt dt

é’ is the damping ratio [non-dimensional]
w, (> 0) is the undamped natural frequency, or bandwidth [rad/unit time]
A is the gain [units of x]/[units of u]

(We again assume Ais 1).

: . 1
Unit step input: u(s) =—
s
System response: x(s) = , 1 s+2w,
. s(s2 +2§a)ns+a),f) s sT+2lws+w]

Case 1: Overdamped (¢ > 1)

m=(—§’i\/§’2—1)a)n
i.e. distinct real negative roots m, <m, <0
m =—Cw, +\{ —1
m2:_é/wn_a)n ng_l
s+2¢w, A B C+4C -1 L+ -1
> > = + where A= , B=
s“+2lw s+, s—-m  s—m, 2 -1 2{C2 -1

System Response: x(7)=H (t)— Ae™" — Be™'

A Im
faster
% X » Re
m: mi
slower

For large damping ratio, m, tends to zero and m, tends to minus infinity, A tends to one and B tends to
zero. The slow root m, then dominates the response, which resembles a first-order response with time
constant 7 =—1/m, .

Case 2: Critically damped (¢ =1
Roots are equal: m, =m, =—@,
1 s+2o,
H(s) = o
s (s+w,)
1 1 w

j— n

s stw, (S+a)n)2

System response: x(t)=l-e ™ —wte ™ =1-"" - te™



Case 3: Underdamped (¢ < 1)

Roots are complex: m =—{@, + jw, where the damped natural frequency @, = +/1— - a,.
cos@=¢

Alm
_______ +j Wd
|
; a » Re
—Coon
X -j 0
x(s)_l_ s+2lw, _l_(s+§a)n)+a)d(§’a)n/a)d)
s sT+2lws+@) s (S+§’a)n)2+a)§
Now (S+§6;)”) < e cosw,t and w”’z e sinw,t
(s+lw,) +w; (s+lw,) + o]
=x(t)=1-e*" (cos w,t+ 6o, sin a)dtj
a)d

The response is an oscillation at a frequency @, that is attenuated exponentially by the factor et

STEP RESPONSE: DAMPING RATIO = 2.0, 1.0, 0.7, 0.5

NORMALIZED TIME WnT (RAD)

Step Responses for overdamped, critically damped and underdamped systems
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Step response of underdamped system
27 27
Period of oscillation P=—=———
@, w1-°
. ) T
Time to first peak T,=0.5P=
w,\1-¢?
. 1
Time constant T=——
{,
) , 4
Settling Time T =4T =——
‘ (o,
— 7T
Maximum overshoot Mp =exp —g

J=¢

As @, increases, so too does @, , hence the frequency of oscillations

As { increases, number of overshoots decreases, as does magnitude of overshoots

4 Mp Overshoots
0.7 5% 1
0.5 16% 2
0.3 37% 3

Critical damping (¢ =1) gives the fastest response without overshoot.
Damping of { =0.7 gives a faster response with 5% overshoot, which is sometimes acceptable.
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