System Response via Laplace Transform

First Order System

Transfer function:
$$\frac{x(s)}{u(s)} = \frac{\lambda}{1+sT}$$
 Differential Equation: $T\frac{dx(t)}{dt} + x(t) = \lambda u(t)$

T is the system's *time constant* [units of time]

 λ is the gain [units of x]/[units of u]

(To save clutter, we assume, without loss of generality, that λ is 1).

Response to unit step:
$$u(s) = \frac{1}{s}$$

System response: $x(s) = \frac{1}{s(1+sT)} = \frac{1}{s} - \frac{T}{1+sT} = \frac{1}{s} - \frac{1}{s+\frac{1}{T}}$

$$\Rightarrow x(t) = 1 - e^{-t/2}$$

Step Response of First Order System

x(T) = 63% final value Settling Time Ts = 4T. i.e. x(Ts) = 98% of final value.

Tangent at t = 0 intercepts final value at t = T

Note that the greater T, the slower the response and the closer s = -1/T to the origin.

Simple 2nd order system

Transfer function: $\frac{x(s)}{u(s)} = \frac{\lambda \omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$, Differential Eqn: $\frac{d^2 x(t)}{dt^2} + 2\zeta \omega_n \frac{dx(t)}{dt} + \omega_n^2 x(t) = \lambda \omega_n^2 u(t)$ ζ is the damping ratio [non-dimensional]

 $\omega_{\rm n}~(>0)$ is the undamped natural frequency, or bandwidth [rad/unit time]

 λ is the gain [units of x]/[units of u]

(We again assume λ is 1).

Unit step input: $u(s) = \frac{1}{s}$

System response:
$$x(s) = \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)} = \frac{1}{s} - \frac{s + 2\zeta\omega_n}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

<u>Case 1: Overdamped</u> $(\zeta > 1)$ $m = \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right)\omega_n$

i.e. distinct real negative roots $m_2 < m_1 < 0$

$$m_{1} = -\zeta \omega_{n} + \omega_{n} \sqrt{\zeta^{2} - 1}$$

$$m_{2} = -\zeta \omega_{n} - \omega_{n} \sqrt{\zeta^{2} - 1}$$

$$\frac{s + 2\zeta \omega_{n}}{s^{2} + 2\zeta \omega_{n} s + \omega_{n}^{2}} \equiv \frac{A}{s - m_{1}} + \frac{B}{s - m_{2}} \text{ where } A = \frac{\zeta + \sqrt{\zeta^{2} - 1}}{2\sqrt{\zeta^{2} - 1}}, B = \frac{-\zeta + \sqrt{\zeta^{2} - 1}}{2\sqrt{\zeta^{2} - 1}}$$
System Response: $x(t) = H(t) - Ae^{m_{1}t} - Be^{m_{2}t}$

For large damping ratio, m_1 tends to zero and m_2 tends to minus infinity, *A* tends to one and *B* tends to zero. The slow root m_1 then dominates the response, which resembles a first-order response with time constant $T = -1/m_1$.

<u>Case 2: Critically damped</u> $(\zeta = 1)$ Roots are equal: $m_1 = m_2 = -\omega_n$ $x(s) = \frac{1}{s} - \frac{s + 2\omega_n}{(s + \omega_n)^2}$ $= \frac{1}{s} - \frac{1}{s + \omega_n} - \frac{\omega_n}{(s + \omega_n)^2}$

System response: $x(t) = 1 - e^{-\omega_n t} - \omega_n t e^{-\omega_n t} = 1 - e^{-\omega_n t} - \omega_n t e^{-\omega_n t}$

<u>Case 3: Underdamped</u> (ζ < 1)

Roots are complex: $m = -\zeta \omega_n \pm j \omega_d$ where the *damped natural frequency* $\omega_d := \sqrt{1 - \zeta^2} \omega_n$. $\cos \theta = \zeta$

$$x(s) = \frac{1}{s} - \frac{s + 2\zeta\omega_n}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{1}{s} - \frac{(s + \zeta\omega_n) + \omega_d(\zeta\omega_n/\omega_d)}{(s + \zeta\omega_n)^2 + \omega_d^2}$$

Now
$$\frac{(s+\zeta\omega_n)}{(s+\zeta\omega_n)^2+\omega_d^2} \leftrightarrow e^{-\zeta\omega_n t} \cos\omega_d t$$
 and $\frac{\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2} \leftrightarrow e^{-\zeta\omega_n t} \sin\omega_d t$

$$\Rightarrow x(t) = 1 - e^{-\zeta \omega_n t} \left(\cos \omega_d t + \frac{\zeta \omega_n}{\omega_d} \sin \omega_d t \right)$$

The response is an oscillation at a frequency ω_d that is attenuated exponentially by the factor $e^{-\zeta \omega_n t}$.

Step Responses for overdamped, critically damped and underdamped systems

ζ	Мр	Overshoots
0.7	5%	1
0.5	16%	2
0.3	37%	3

Critical damping ($\zeta = 1$) gives the fastest response without overshoot.

Damping of $\zeta = 0.7$ gives a faster response with 5% overshoot, which is sometimes acceptable.