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System Response via Laplace Transform 
 
 
First Order System 

Transfer function: 
( )
( ) 1
x s
u s sT

λ=
+

 Differential Equation: 
( ) ( ) ( )dx t

T x t u t
dt

λ+ =  

T  is the system’s time constant [units of time] 
λ  is the gain [units of x]/[units of u] 
 
(To save clutter, we assume, without loss of generality, that λ is 1). 
 

Response to unit step: ( ) 1u s
s

=  

System response: ( ) ( ) 1
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Step Response of First Order System 

x(T) = 63% final value 
Settling Time Ts = 4T. i.e.  x(Ts) = 98% of final value. 
Tangent at t = 0 intercepts final value at t = T 
Note that the greater T, the slower the response and the closer s = -1/T to the origin.
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Simple 2nd order system 

Transfer function: 
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, Differential Eqn: 
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ζ  is the damping ratio [non-dimensional] 

( 0)nω >  is the undamped natural frequency, or bandwidth [rad/unit time] 

λ  is the gain [units of x]/[units of u] 
 
(We again assume λ is 1). 
 

Unit step input: ( ) 1u s
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System response: ( ) ( )
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Case 1: Overdamped (ζ > 1) 

( )2 1 nm ζ ζ ω= − ± −   

i.e. distinct real negative roots 2 1 0m m< <  
2
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System Response: ( ) ( ) 1 2m t m tx t H t Ae Be= − −  

For large damping ratio, 1m  tends to zero and 2m  tends to minus infinity, A tends to one and B tends to 

zero. The slow root 1m  then dominates the response, which resembles a first-order response with time 

constant 11T m= − . 
 
Case 2: Critically damped (ζ  = 1) 

Roots are equal: 1 2 nm m ω= = −  
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System response: ( ) 1 1n n n nt t t t

n nx t e te e teω ω ω ωω ω− − − −= − − = − −  
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Case 3: Underdamped (ζ  < 1) 
 

Roots are complex: n dm jζω ω= − ±  where the damped natural frequency 2: 1d nω ζ ω= − . 

cosθ ζ=  
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Now 
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The response is an oscillation at a frequency dω  that is attenuated exponentially by the factor n te ζω− . 
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Step Responses for overdamped, critically damped and underdamped systems 
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Decay Envelope = 

Mp

 
Step response of underdamped system 
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As nω  increases, so too does dω , hence the frequency of oscillations 
 
As ζ  increases, number of overshoots decreases, as does magnitude of overshoots 
 
 

ζ  Mp Overshoots 
0.7 5% 1 
0.5 16% 2 
0.3 37% 3 

 
Critical damping ( 1ζ = ) gives the fastest response without overshoot. 
Damping of 0.7ζ =  gives a faster response with 5% overshoot, which is sometimes acceptable. 
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